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Photoluminescent diimine complexes of RuII have been ex-
tensively investigated for a wide variety of applications including
solar-energy conversion and molecular sensing.1-4 Although much
less studied, certain CuI bis(diimine) complexes display useful
properties including strong visible absorption, long (>100 ns)
excited-state lifetimes, and excited-state redox potentials that
render them viable as photocatalysts.5-9 Because of the substantial
price differential between copper and ruthenium, copper-based
devices and sensors are economically attractive. A central problem
associated with the use of CuI systems has been the low quantum
yields (φ ≈ 0.1-0.4%)8,10 of the complexes. Here we report a
CuI complex that exhibits impressive photophysical properties in
solution and in the solid state. In the solid state, the quantum
yield is equivalent to the most widely studied RuII complex ([Ru-
(bpy)3]2+; bpy ) 2,2′-bipyridine), and the excited-state lifetime
is longer.

The ligand dmp has been known for more than fifty years,11

but it was not until 1980 that Blaskie and McMillin demonstrated
that [Cu(dmp)2]+ is emissive upon excitation into the visible
MLCT band.12 It is now known that 2 and 9 phenanthroline
substituents are necessary for [Cu(NN)2]+ complexes (NN) a
1,10 phenanthroline) to be emissive.13 The 2 and 9 substituents
sterically inhibit molecular distortion that occurs in the vibra-
tionally relaxed excited state.5 This distortion results from the
tendency of the CuII ion to adopt a square-planar (flattened)
geometry, the MLCT state having considerable CuII character.
Recent work has shown that increasing the steric requirements
of the 2 and 9 substituents leads to improvements in the excited-
state lifetimes (τ) and quantum yields (φ) of [Cu(NN)2]+

complexes by further inhibiting excited-state distortion.10 There
is a limit however. Increasing the substituent size by too much
leads to the inability to form the [Cu(NN)2]+ complex. Utilizing
molecular models, we predicted that only one ligand in a [Cu-
(NN)2]+ complex needs to have bulky 2 and 9 substituents to
prevent the flattening distortion. Thus, a heteroleptic complex in
which one phenanthroline containstert-butyl groups at the 2 and
9 positions (dbp) should lead to a complex with an extremely
rigid coordination sphere. Because of the lability of CuI com-

plexes, heteroleptic complexes are expected to scramble. The
beauty of the dbp ligand is that it allows the preparation of a
heteroleptic complex since the formation of [Cu(dbp)2]+ is
sterically impossible.14 Here it is demonstrated that [Cu(dbp)-
(dmp)]+ shows much larger improvements inτ and φ than
previously examined homoleptic complexes; these effects are
attributed to the size of thetert-butyl groups of dbp (vide infra).
Importantly, this report represents the first demonstration of how
significant photophysical effects can be achieved with heteroleptic
CuI complexes and opens the door to a family of molecules for
further investigation.

The complex [Cu(dbp)(dmp)](PF6) (1) is prepared by first
stirring 1 equiv of dbp15 with 1 equiv of [Cu(CH3CN)4](PF6)16 in
CH2Cl2 under N2. One equivalent of dmp is then added, and the
solution immediately turns from yellow to deep orange. Recrys-
tallization (MeOH) is sufficient for purification from a small
amount of the side product [Cu(dmp)2](PF6) and yields the air-
stable, orange1.17 The crystal structure of1 demonstrates the
heteroleptic coordination about the copper (Figure 1).18 The
coordination geometry is distorted from aD2d pseudotetrahedral
geometry that might be expected for a d10 ion. The geometry is
best described as trigonal pyramidal with molecularCs symmetry,
in which the dmp ligand is canted fromD2d symmetry along a
mirror plane. Several structures of [Cu(dmp)2]+ have been shown
to adopt geometries distorted fromD2d symmetry.19 In most cases,
the largest distortion is a flattening of the phenanthroline (phen)
ligands with respect to each other, attributed to crystal-packing
forces.20,21 In the structure of1, however, thetert-butyl groups
of the dbp ligand prevent the flattening distortion and result in a
nearly orthogonal orientation of the two phen planes.22 In addition,
in the structure of1, there are two independent molecules of [Cu-
(dbp)(dmp)]+ in the asymmetric unit. However, each of the
complex cations adopts identical geometries (rms error) 0.022
Å for the CuN4 cores, see Supporting Information).

Complex1 emits brightly at room temperature upon illumina-
tion with a hand-held UV lamp. Since many of the applications
of luminescent inorganic complexes require the complexes
attached to solid supports or embedded in solid matrices,23-25 the
properties of1 in the solid state are of interest. The excited-state
lifetime and emission spectrum (Figure 2) of the complex were
recorded upon excitation into the MLCT band (λmax

abs) 454 nm,
mineral oil mull).26 Complex1 emits with a maximum at 595
nm, and the decay is best fit by multiple exponentials (Figure
2).28 The solid-state lifetime and emission spectrum of [Ru(bpy)3]-
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(PF6)2 were also measured using identical methods (Figure 2).
The quantum yield of1 was determined to be 1.19( 0.25 times
higher than [Ru(bpy)3](PF6)2 under ambient conditions.31,32 We
estimate the solid-stateφ of 1 is at least 50 times higher than
that of one of the most emissive, previously examined [Cu(NN)2]+

complexes, [Cu(bfp)2](PF6).33,34 Further, the solid-state lifetime
of 1 is considerably longer than that found for [Ru(bpy)3](PF6)2

(Figure 2).

The absorption and emission spectra of1 were recorded in CH2-
Cl2 (Figure 3). The absorption bands centered at 440 nm (ε )
7000Μ-1 cm-1) are assigned to MLCT transitions, analogous to
those of [Cu(dmp)2]+.35 Complex 1 emits in CH2Cl2 with a
maximum at 646 nm (Figure 3); the absolute quantum yield is
1.0%.36 The excited-state lifetime of1 in degassed CH2Cl2 is 0.73
µs.38 Previous to this report, the longestτ andφ for a [Cu(NN)2]+

complex in solution were found for [Cu(dsbp)2]+ (dsbp) 2,9-
di-sec-butyl-1,10-phenanthroline)τ ) 0.40µs andφ ) 0.45%.10

Relative to [Cu(dsbp)2]+, 1 exhibits an 82% increase inτ and a
120% increase inφ. The higherφ and longerτ of 1 versus [Cu-
(dsbp)2]+ are primarily attributed to a substantial reduction
(-45%) in the nonradiative rate constant,knr.39 This likely results
from the maximal interligand steric interactions in1 (Figure S6)
that prevent adoption of a flattened geometry in the vibrationally
relaxed excited state, leading to a higher energy emissive state,
which in turn reduces the vibrational overlap between the
emitting40 and ground states.

Complex1 represents a landmark improvement in the photo-
physics of [Cu(NN)2]+ complexes.41 This study also illustrates
that inexpensive copper-based complexes can exhibit photophysi-
cal properties that are equivalent to, or better than, ruthenium-
based analogues.
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Figure 1. One of the independent [Cu(dbp)(dmp)]+ complex cations.
Hydrogens have been removed for clarity. Selected bond lengths (Å) and
angles (deg) for both independent cations: Cu(1)-N(1), 2.051(6); Cu-
(1)-N(2), 2.087(6); Cu(1)-N(2A), 2.088(6); Cu(1)-N(1A), 2.094(6);
Cu(2)-N(2B), 2.064(6); Cu(2)-N(1B), 2.080(7); Cu(2)-N(1C), 2.085-
(6); Cu(2)-N(2C), 2.096(6); N(1)-Cu(1)-N(2), 81.4(3); N(1)-Cu(1)-
N(2A), 131.5(2); N(2)-Cu(1)-N(2A), 113.3(2); N(1)-Cu(1)-N(1A),
133.6(2); N(2)-Cu(1)-N(1A), 114.6(2); N(2A)-Cu(1)-N(1A), 83.9-
(2); N(2B)-Cu(2)-N(1B), 81.2(3); N(2B)-Cu(2)-N(1C), 132.1(3);
N(1B)-Cu(2)-N(1C), 115.7(2); N(2B)-Cu(2)-N(2C), 131.0(2); N(1B)-
Cu(2)-N(2C), 115.0(3); N(1C)-Cu(2)-N(2C), 84.4(2).

Figure 2. Time-resolved, room-temperature photoluminescent spectra
of [Cu(dbp)(dmp)](PF6) (____) and [Ru(bpy)3](PF6)2 (- - -) at 675 nm;λex

) 455 nm. Since each decay is best-fit by multiple exponentials, an
effective half-life (τeff) was calculated from the time the total area under
the curves decreased by 50%:τeff, [Cu(dbp)(dmp)](PF6) ) 1.5 µs; τeff,
[Ru(bpy)3](PF6)2 ) 0.21µs. Inset: corrected solid-state emission spectra
of [Cu(dbp)(dmp)](PF6) (____) and [Ru(bpy)3](PF6)2 (- - -); λex ) 450 nm.

Figure 3. Absorption spectrum and corrected emission spectrum (λex )
450 nm) of1 in CH2Cl2 at room temperature.
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